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A c~~mparative~y simpte methnd of deriving the dispersion equation describing the oscillations of a 

self-gravitating viscous homogeneous sphere is proposed. The asymptotic form of this equation at low 

viscosities is considered. A method of investigating the nonviscous oscillations of ellipsoids of rotation 

which can be generalized to the case when there is viscosity is suggested. The spectrum of the characteristic 

oscillations of a figure is determined. As an example of the case when viscosity is taken into account, the 

pulsating oscillations of a system are considered when there is friction of the gaseous mass against the 

background running through it. It is found that instability sets in in the case of ellipsoids which are more 

oblate than a certain critical value. 

BY CONSIDERING relatively simple examples, we shall firstly attempt to present a scheme which can 
be generalized to more complex cases of the viscous oscillations of ellipsoidal equilibrium figures. 
Among such examples are the problem of the viscous oscillations of a homogeneous sphere and the 
problem of the unperturbed oscillations of McLaurin spheroids, both of which are considered 
below. The first of these can be solved exactly (see [ 11, for example) and, in this sense, it may be 
considered as having been fully investigated. The solution of this problem will be given in a simpler 
and more obvious form than was done in [l], for example. As far as the second problem which is 
considered here is concerned, the equation for the characteristic frequencies of the oscillations in 
this case has been obtained by Bryan [2] but his actual calculations are unsuitable for analysing the 
secular stability of equilibrium figures. On the other hand, the conclusions drawn by Chandrasekhar 
[3] using a virial method to investigate the effect of viscous dissipation on the stability of McLaurin 
spheroids are in need of refinement since the problem was solved subject to certain assumptions, the 
generality and even the correctness of which are not fully clear. 

In spite of the formal difference between the Bryan and Chandrasekhar methods, they both make 
use of the possibility of arriving at a system with a finite number of degrees of freedom for vibrations 
of an actual type [4]. If the components of the Langrangian displacements are specified using 
polynomials (let us say, in the (n - 1)th degree with respect to the Cartesian coordinates), this leads 
to a known displacement of the boundary surface along the normal. On the other hand, as was 
shown in [.5], a deformation of the boundary under the circumstances being considered generates a 
perturbation of the internal potential which is described by an nth degree polynomial. The 
linearized equations of hydrodynamics then contain polynomials of the same degree on both sides 
and the problem reduces to a system of finite number of differential equations with constant 
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Viscous oscillations of ellipsoidal figures 627 

coefficients (these differential equations turn out to have the simplest form when determining the 
frequencies of ellipsoids of rotation). The above-mentioned scheme was implemented directly by 
Bryan but indirectly by Chandrasekhar. However, in the case of viscous oscillations, and even for 
the simplest model, which is that of a homogeneous sphere, the perturbations are not polynomials 
[l] (this will be confirmed below) and, strictly speaking, the meaning of the quantity it is lost. It is 
therefore necessary to study nonviscous oscillations from a more general point of view. 

1. Let us consider the configuration of a fluid mass consisting of a viscous incompressible fluid of 
density p which is constant in time and space when there is an isotropic pressure p (x, t) and denote, 
by u, the velocity of the fluid element located at the point x (t is the time). The motion of the fluid is 
described by the Navier-Stokes equations and a continuity equation. Without loss in generality, it 
may be assumed that the x3 axis of the Cartesian system of coordinates is directed along the normal 
to the surface. The boundary conditions that the normal component of the total stress on the free 
surface should vanish are then written in the form 

au3 
----y-= 

6 8x3 
0, z++o, ~+&l&o (1.1) 

(v is the coefficient of kinematic viscosity). 
If it is assumed that the equilibrium figure has rotational symmetry then one of the latter 

components of the boundary condition turns out to depend on the others (let us say, the first) and it 
drops out of the subsequent treatment. 

Let the solution of the linearized system of equations depend on time as e-““‘(a is a characteristic 
value of the parameter which is to be determined). Then, by separating out the time factor in the 
linearized equations of motion and applying the Laplace operator to the resulting equations, when 
account is taken of the noncompressibility condition we get: A(vA - io)ul = 0 (the same rela- 
tionships for the two velocity components are not written out). 

Let us now introduce the auxiliary functions u’ = Au1 and u” = (VA - iw)ul, such that 
VU’ = uU = iOUl . However, (VA - io) u’ = (VA - iw) Au1 = 0 and Au” = A(vA - io) u1 = 0, from 
which we conclude that the magnitude of u1 (as well as the magnitudes of u2 and u3) decompose into 
two terms, each of which satisfies a simpler condition. More precisely, u1 = ui(‘) + ur(*) and 

(vA - iw)u,(l) = 0, Aul(2) = 0 (1.2) 

In terms of the quantities which have been introduced, the equations of motion are written in the 
form 

where VI is the total potential and V(x) is the internal potential. 
Further, the overall pressure perturbation (the pressure is considered on the boundary) consists 

of two terms: a perturbation Z1p at a fixed point and a perturbation a2p from the displacement of the 
boundary. Since the pressure in the unperturbed state is determined by the relationships 

p = pV + const = 2/,nGp2 (a2 - r2) 

(G is the gravitational constant and a is the radius of the sphere and, in addition, we shall use the 
spherical coordinates r and 0), the perturbation from the displacement < of the boundary will be: 
a2p- capjar. 
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Since the body being studied is spherically symmetric then, according to the general rules of group 
theory, every scalar quantity characterizing a perturbation can be taken to be proportional to a real 
spherical harmonic [6]. In particular, this spherical harmonic may be assumed to be a Legendre 
polynomial P, (cos8) (n 3 1, since there cannot be a purely radial displacement of an incompressible 
fluid) and the remaining solutions with the same w are obtained by linear superpositioning. We have 

&P = -*i3~Gp2S,aP, (cos 0) (1.4) 

where <,, is the radial displacement of the surface at a pole. The perturbation of the inner potential is 
abo expressed in terms of the radial displacement of the boundary 

65’ = 4 (2n + ~)-l~G~~~a~~ (cos 6) 

Application of the div operator to the first three equations of (1.3) yields AVi = 0 and from 
considerations regarding continuity within the sphere we have the condition 

V, = Lr”P, (COS e) (1.5) 

where L is a certain coefficient. 
By virtue of the last formula of (1.3), the perturbation of the overall potential is expressed as 

follows: 6V1 = 6v - &p/p. 
By taking account of the first boundary condition of (1 .l), we find 

6V, =-= 2:a (212 -+ l)-lnG&,aP, (cos 0) - vdu,lb’x, == 0 (1.5) 

Let us now turn to the second boundary condition and change from Cartesian coordinates to polar 
coordinates in the meridional plane. Then, when 8 = 0, the second boundary condition takes the 
form 

1 dU - --A_ 
i i 

%I 
a0 

- 210 -j- -Y$-- = 0 
(i (I.71 

(the index is omitted in writing the quantity ui since, here and subsequently, u,. and ue are only 
associated with the first component of the velocity). 

It is known that an arbitrary vector field can be represented in the form 

( 111. u2, uR) -= grad F I-- r - x + r x grad 9 (1.8) 

where E, x and Jt are certain variable scalar functions. We shall not consider the last term on the 
right-hand side of formula (1.8) any further but it can be studied separately and independently of 
the remaining terms (it yields oscillations of the so-called torsional type [7]). Since the divergence of 
the displacement in an incompressible field is equal to zero, the following relationships hold: 

It is obvious from this that the functions E and x can be expressed in terms of a single function, let 
us say, N. We have 

(I.91 
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Consequently, the condition that the divergence of the displacement should vanish yields the 
representation 

Since each velocity component must satisfy the (first) condition of (1.2), it is natural also to take 
this condition in the case of the function N(x). Now, by calculating the radial and tangential 
components of the velocity 

(1.10) 

we rewrite the second boundary condition in the form 

n(n+1; i?N 
a 

The angle 0 is measured in an arbitrary direction on the sphere and the expression under the sign 
of the derivative with respect to 8 must therefore be constant on the sphere on account of the 
dependence -P,(cos~), that is, the boundary condition takes the form 

(1.11) 

By virtue of formulae (1.5) and (1.10) and the relationship <a = u,l(io), the first boundary 
condition is written in the following form: 

8nGpn (n - 1) 
369 (2n + 1) --1+ 

- 8”Gp,“i-~~;~+1) N_&, +a+‘) (+$)= 0, X==+- (1.12) 

Let us now solve the first equation of (1.2) where the quantity u(l) is replaced by the function iV 

By combining the preceding equation with Eq. (1.1)) we find 

-2% + n(n+1)-2N+ ixN_ $[_$___!$) =O 

Substituting the expression VI defined in Eq. (1.5) and La” from (1.12) gives the following: 

N- -I ‘* 2 
+ Z(5) + 

- 1 

----+ 2n2 1 n-l 

j y [ 8nGpan a 
3d (2n + 1) n-l + 2in (n -+ 2, 

I 
zzz 0 xa 

(1.13) 

(1.14) 
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In order to find the function N, which appears in the dispersion equation (1.14) in explicit form, 
we return again to Eq. (1.13). By means of the substitution F = NV/r, it is reduced to a standard 
equation [8], the solution of which is (apart from a coefficient which is unimportant here) 

F ~-1 J,,ll/, (1. f-ix) 

where J is a Bessel function. After some simple reduction, we finally obtain the dispersion equation 
in the form 

_- 
1 a/v _ 1 -- 

IV dr 
p _ r V - ix Jn+3,2(r I/--ix) 

II r ’ J n+!& (r cr- ix) 1 
(1.15) 

which is identical, subject to the assumptions which have been made, with the analogous results 
obtained elsewhere [ 1,9]. 

2. We note that the method which has been developed above (if a cylinder is not mentioned) 
almost exhausts the possibilities for the exact solution of the problem of the viscous oscillations of 
ellipsoidal equilibrium figures (and the more cumbersome methods [l] are even more unsuitable for 
this purpose). The main attention must therefore subsequently be given to the case of low viscosity 
(or, on the other hand, to high viscosity which, however, is outside the scope of this paper). 

We shall use the traditional boundary layer method [lo]. 
As the zeroth approximation, it is natural to consider the vibrations of a homogeneous sphere 

without viscosity. In this case, the equation of motion [taking account of (1.5)] is 

@‘/ats z dV b I’ ’ ‘3 - 3 ~2~,r”-l P,, (cos 0) 

By separating out the time factor, after some simple algebra we find the frequency of the 
vibrations of a homogeneous sphere consisting of an ideal incompressible fluid in accordance with 
the well-known Kelvin formula 

o,0’/(4nGp) =- 2n (n - 1)/(3(&~ + 1)) 

In view of the fact that an approximation is being considered which corresponds to low viscosity, 
we write 

0 = 00 + YO, -+ 0 (Y”) (2.1) 

In order to calculate the asymptotics of small viscous vibrations of a sphere, we initially consider a 
planar boundary layer with a free surface x3 = 0 and find the characteristic orders of the 
perturbation due to the viscosity compared with the fundamental nonviscous motion. The role of 
self-gravitation in a boundary layer is insignificant and it may therefore be assumed that the 
acceleration due to gravity g is specified. The unperturbed pressure within the layer is given by the 
formula 

P = -@X3. (2.2) 

We will seek the perturbation in the form 

6Uj = Aj (x3)eikxl+iot, AZ (x3) = 0 

By substituting these formula into the equation of motion of the fluid in the planar boundary layer 

ddujli3t = -_~‘~atipiax~ + vGuJ 
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we find, after some reduction, that 

Y (A,“’ (x3) - PA,’ (IcJ) - ioA,’ (GJ = ikv (-4 / (x3) - k2A, (x3)) + 

+ ka4 3 (53) (2.3) 

By taking account of the compressibility condition which, in the given case, has the form 
ikA I (x3) + A3’(x3) = 0 and by assuming the magnitude of A to be proportional to eYX3, we reduce 
Eq. (2.3) to the biquadratic equation 

v\+ - (io + 2k2v)y2 -i- (h’v + ik’o) = 0 

It can be seen that only two of the four roots which are proportional to X& have a physical 
meaning and the most general solution is 

-4, = bie%X.~ + /jzeYIxs, A, := - -!$ bleY1x3 _ $ b2e%% (2.4) 

The thicknessofthe viscous boundary layer is determined by the root y2 and is equal in order of 
magnitude to d/l/x. Next, by virtue of formula (2.2), the pressure perturbation from the displace- 
ment of the boundary Zi2p = -gp<. Hence, when account is taken of (2.4), the first boundary 
condition (1.1) can be written in the form 

R 
- +1+; 0 i 

h) + & [b, h* v - k”\J .- LO) + b, (~32~ - k*v - io) + 

+ 2vik (b, + b,)] = 0 

In a similar manner, by writing the second boundary condition (1.1) in the form 
&A3 (x3) +AI’(x3) = 0 and substituting the quantities Al and A3 according to formulae (2.4) into 
this, we conclude from-an analysis of the two equations that the order of magnitude of the quantities 
A 1 , A3 and p are 1, A/v and u, respectively. The orders of-magnitude of the quantities SU, , 8u2 and 
au3 are as follows: 1 for terms with e 71x3 and d/v, u and dv for the terms with erS3. The same 
orders of magnitude might also be expected in the case of a weakly distorted boundary. Here, the 
quantity 8ug only occurs in the global term eylX3 in the first boundary condition. Both 6ui and 8u3, 
which are a common order of magnitude v of the global term, occur in the second boundary 
condition. The effect of the boundary layer is only present in the expression for 6~~. 

By analogy with the preceding analysis, let us now study the approximate boundary conditions for 
a sphere. Let us initially take the second boundary condition. At a pole we have 

A, = b,ekxa + &++i)l%& 

ik A, = - ibleW _ _ 
l+i 

On substituting these relationships into formulae (1. l), we get 

2b,k + b2 (1 + i) v’?ci2 =: 0 

Consequently, the tangential component of the velocity also predominates in the boundary layer 
in a sphere. A correction occurs in composing the first boundary condition from the main part of the 
radial velocity which is proportional to the viscosity, while the flow in the boundary layer yields a 
negligibly small correction. In the second boundary condition for the tangential component of the 
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velocity, we take both the main term and the term due to the flow in the boundary layer which 
affects the radial velocity component and then solely take account of the main flow in the case of this 
component in the second boundary condition. 

Let us now consider the second boundary condition again in terms of the radial and tangential 
components [formula (1.7)]. In accordance with the remarks which have been made, the velocity 
components occurring in this condition are 

Ln 
u, = -Tg P-1 P, (cos 0) 

u’d-’ = +-1-g P, (cos cl), u,$“’ = f&+i) Y y.j2 b--n) -& p, (~0~ 0) 

By substituting these formulae into condition (1.7), we find that, when Y = a 

f= - 2L (n - 1) c-2 

i (1 -1 i) 0 1/x/2 (2.5) 

By writing the equation of continuity [~(r%,)lar]lr~ + [a (ue sin8)lXl]l(r sin 0) = 0 in terms of u, 
and ue and discarding the small quantity 24/r, we get after some reduction 

&$‘/&” = __n (n + l)a-l~&+‘)l z&U) 

Hence, by taking (2.3) into account, we find 

(2.6) 

Now, from Eqs (l.l), (1.5) and (2.6), we obtain the dispersion equation which determined the 
small viscous vibrations of the sphere 

8nGpn (n - 1) - 
Yd 

_2,,Wn- 1) 
i Q 2 

-V 
2 1 Tn(n-, l)rn -- I) 

~-0 - .- 
i (1 -/- i) cwr 1 r_ 

(2.7) 

On substituting expression (2.1) into (2.7), we find the correction due to the viscosity to the 
fundamental frequencies of a homogeneous sphere 

co1 = i 
’ 3(2nj- l)CJ$ 
1 

_I_ (n + 1) (n - 1) I i (n - I) (2/L + 1) 

8nCpa” ’ 2 -j= iLn (2.8) 

Formula (2.8) is identical to the analogous results obtained elsewhere (see [l J, for example). 

3. Let us now consider the configuration of a fluid mass consisting of an ideal fluid (we shall retain 
the notation employed in the preceding sections). Let a figure be uniformly rotated with an angular 
velocity C? (to be specific, we shall assume that the vector fi is directed along the x3 axis). Assuming 
that the solution of the linearized system of equations of motion referred to a coordinate system 
which rotates at the same angular velocity depends on time as eiwt law, we find 

iou, = $& + 2Qu,, avl iou, = r - 2Ru1, avi 
2 

iou, = - 
ax3 (3.1) 

and the incompressibility condition is written in the form 
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aav, avl 
a32 

+_+2p 
axa= 

0; 53L+, z2=,l_2!& 
3 

(3.2) 

Moreover, we shall use the notation us’ = us/~. Here al (= u2) and a3 are the semi-axes of the 
boundary ellipsoid. 

Since we are dealing with a weakly perturbed homogeneous ellipsoid, its internal state can be 
fully described by the motion of the boundary surface and, in particular, by the component of the 
displacement normal to the surface. It is convenient to use spheroidal coordinates [ll]. We 
introduce two spheroidal coordinates systems since the Laplace equation is encountered in a double 
form: for the potential and for the hydrodynamic characteristics. 

Let 6 and q be the above-mentioned coordinates in the first case. They are related to the 
Cartesian coordinates or, more precisely, with the coordinates R = dx12 +x2* and x3 by the rela- 
tionships 

R = 

[ 

(a13 - a33 + E) (a13 - a33 + q1) %11 % ala - asa 1 % 
9 x3=+ - - I ala - asa 1 (3.3) 

(6 = u3* on the surface of the ellipsoid). 
We also have analogous formulae for the distorted spheroidal coordinates X and I.L [on replacing E, 

q by A, k and u3 by u3’ in (3.3)]. 
We note that, in the expressions for x3 and (xs’), ambiguity arises due to the possibility of 

selecting the position of a point on the upper or the lower half of the ellipsoid. It follows from the 
link between the old and new coordinates on the surface that q/p = (ai* - u3*)l(u1* - u3*). 

In both cases, the azimuthal angle cp = arctg(X*/Xi) remains the same. 
We shall now act in the following manner: we initially specify the potential of the perturbation in 

a general form and, using it, we find the corresponding velocity field and the deformation of the 
boundary which is induced by the vibrations. On the other hand, a displacement of this boundary 
must generate that perturbation of the potential from which the calculation is started. A comparison 
of the two results enables on to find the frequencies of the characteristic vibrations o and the form of 
the perturbations. 

Assuming that perturbations of the potential are proportional to eik‘+, we recover the general 
solution for the internal and external potential which is expressed by the known series 

v’i = T l&P,’ (rl’) Pnk (E’) Qnk (2) eikq 

Ve = Z PnPnk 0-1’) qnk (5’) Pnk (4 eikq (3.4) 

q’ = j,f- qj(a12- a3f2) , El = ?&al2 - a,“) , z = a31Va12 - a32 
@, are certain coefficients). Here, we have used the functions pnk(z) = ik-“Pnk(iz) and 
&k(*) = i4+n+1 Qnk(iz), where Pnk(z) is an associated Legendre function and en“(z) is a 
Legendre function of the second kind. 

The discontinuity of the normal derivative on the boundary is determined by the formula 

i3V,ldn - r3VilBn = -4nGp5 

(II is the external normal to an element of the surface), the left-hand side of which, by virtue of 
formulae (3.4), reduces to the form \ I 

av 
1 

av. 
-2= 

an an F ~ BAk h’) 
V-Cd - a:; (a32 - rl) 

(qnk’hk - Pnk’qnk) eikq 

n 
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But, since qnk’pnk -pnk’ qnk = -(l + 1)-l, the normal displacement is expressed in the following 
form: 

(3.5) 

It is now necessary to take account of the pressure change in the perturbed state. The physical 
boundary condition for the pressure, which requires that it should vanish on the surface of the 
boundary ellipsoid, must reduce to the form p = p~$“dl- R2/a12 -x32/+2 (pocc) is the pressure at 
the centre), that is, 1 grad pi = 2P,‘“) ~R2/a14 + x32/a,4. By taking account of the preceding formula, 
we find from the relationship i$p + cgradp = 0 that the change in the pressure at the fixed point is 

(3.6) 

Let us now change to the coordinates X and CL which are distorted in the above-mentioned sense. 
In these coordinates, the total potential on the surface is determined by the formula 

where, in accordance with (3.6) 

s II = pnk (z)q,,’ (z) - 2~44 l/Q - a,‘/(4~~Gp~a,~a,) (3.7) 

After continuation into the internal domain (that is, the solution of the Dirichlet problem for the 
function VI ) , we have 

(3.8) 

On the other hand, the normal displacement 

5 = a,6z, + a$x, + a:$.x, (CQUi -t- a+?_ + a,+,)i(io) 

where al, a2 and os are the direction cosines of the external normal in an element of the surface. 
From this and (3.1), we find 

(3.9) 

By calculating, according to formula (3.8), the values of the derivatives of the potential on the 
surface appearing in (3.9), we represent the potential in the form 
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[the quantities s, are defined by formula (3.7)]. 
As comparison of Eqs (3.5) and (3.10) shows that terms with different values of n behave 

independently: the magnitude 5 of each characteristic vibration turns out to be proportional to its 
function P,“(~L’). In order that not all the c, should simultaneously vanish in matching the parts to 
one another, it is necessary that one of the c, should drop out due to the fact that the coefficient in 
front of it, which depends on o, vanishes. In principle, the possible spectrum of values of o is 
determined by this. We also emphasize that the symmetry with respect to the azimuth is obvious 
since the characteristic vibrations are classified according to the index k for any system with 
rotational symmetry. The symmetry with respect to n is not caused for such obvious reasons and it 
was difficult to predict it beforehand. 

We therefore arrive at the conclusion that, in order for the hydrodynamic equations to be valid, it 
is required that just one of the quantities c,, should differ from zero. 

The arguments which have been presented enable one to derive the dispersion equation for the 
characteristic frequencies of ellipsoids of rotation from Eqs (3.5) and (3.10). After some algebra, 
which we shall omit here, the above-mentioned equation can be represented in a form which is not 
infrequently given in the literature [12] 

Ip,O (z&Z,“(z) - pnk(z)qnk (41 lkoDkP, mJ+o, (0 - 2Q) (1 + z-2)0~+% @,)I = 

= o2 (w - 2Q)q,” (z)D’P, @J/Q2, Q. = id (3.11) 

where D is the differentiation operator. Equation (3.11) was first obtained by Bryan [2]. 
Hence, the characteristic vibrations of ellipsoids of rotation have been found. For each choice of k 

and IZ, the characteristic vibrations are determined to within an arbitrary factor. It is typical that the 
form of the perturbation of the potential for fixed n and k is independent of the actual choice of the 
root of the dispersion equation. 

4. In order to take account of the viscosity, we introduce a so-called external viscosity, that is, the 
friction of the gas mass (the figure) against the background which is permeating it. The density of 
the gaseous medium is assumed to be constant the whole of the time. The background is assumed to 
be rotating at a fixed angular velocity R at which the spheroid itself rotates. It is obvious that there is 
no friction in the stationary state and that it only appears as a result of the vibrations of the figure. 
As is customary [13], we assume that the dependence of the friction on the relative velocity of the 
gas and the background is linear with a coefficient of proportionality u (u> 0). The linearized 
equations of motion (3.1) are rewritten in such a manner that the quantities iwuk in the left-hand 
sides are replaced by iw~ + cruk (k = 1, 2, 3). These equations together with the incompressibility 
condition again lead to formula (3.2) but w is replaced by w - ia in the expression for 7. Next, in 
formula (3.10), the quantity w* is simply changed to w(w -Zu). Finally, the same coefficient 
(w -iu)lw also goes into the left-hand side of the dispersion equation (3.11) and yet again 
w’ = w - iu occurs at the other places instead of w. 

As the most important application, let us consider the pulsating vibrations of a figure which corresponds to 
n = 2, k = 0. The dispersion equation (3.11), after some minor reduction, takes the form 

Gh (z) (1 + z2) CPW’ - q20 (Z) ](3zZ + 1) 0’2 - 4522 (1 -t z2)] (0’ -]- io) = 0 

h (z) = Pro (2) 9,O (2) - PZO (z) q2O (2) 
(4.1) 

If u = 0, we have a zero root and we consider this root of the dispersion equation which would vanish in the 
case of an ideal fluid. The existence of such a zero root o simply corresponds to the possibility of a small change 
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in the angular velocity of rotation R. For a small nonzero value of cr, the corresponding root is small by 
continuity and it can be sought in the form p’ = ya + 0 (n*) and o = (y + i) o. We find that 

0 = iah (Z) / [h (2) + z/3420 @)I 

Simple calculations enable one to obtain 

(4.2) 

It (2) = (1 i- ?) [-(9Z2 -+ 1) (arctg z-r)/4 + 2 (9z2 -+ i) / (4 (1 + 22))) 

The vanishing of the above expression corresponds to the maximum in the angular rate of rotation of the 
figure [3] for which a&x = 0.449331 (here, the eccentricity of the meridional cross-section e = 0.92995). 

On the other hand, 

3h (I) $ 29,’ (z) = (1 ..i-. Gz2 -I- 27~~) arctg z+ + 9.: + 2T? 

By making use of the obvious inequality arctgcp<cp and cp >O (tgcpi > ‘pi, O< cpl <2n), we find that the 
denominator in formula (4.2) is positive. 

Since the case when Imz<O corresponds to instability of the vibrations, we conclude that the inability of the 
pulsations which is obtained when h(z) < 0, that is, when z> z*, where z* corresponds to the most rapidly 
rotating McLaurin spheroid (the critical spheroid). In other words, instability sets in in the case of ellipsoids, 
the oblateness of which is greater than a certain critical value. Hence, we are dealing with secular instability at a 
fixed angular velocity of rotation. 

We emphasize that only a single vibrational mode has been considered. 
I wish to thank V. A. Antonov for his interest in this work. 
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